Developing a strategy for the processing of age-hardenable alloys by ECAP at room temperature

Nguyen Q. Chinha,b,*, Jenő Gubiczaa, Tomasz Czeppec, János Lendvaia, Cheng Xub,1, Ruslan Z. Valievd, Terence G. Langdonb,e

a Department of Materials Physics, Eötvös Loránd University, Pázmány Péter s. 1/A, H-1117 Budapest, Hungary
b Departments of Aerospace \& Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089-1453, USA
c Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. W. Reymonta 25, 30-059 Kraków, Poland
d Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12 K. Marx Street, 450000 Ufa, Russian Federation
e Materials Research Group, School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ, UK

\textbf{A R T I C L E I N F O}

Article history:
Received 22 December 2008
Received in revised form 7 March 2009
Accepted 10 March 2009

Keywords:
Aging
Al–Zn–Mg alloys
Equal-channel angular pressing (ECAP)
Precipitation
Supersaturated alloys

\textbf{A B S T R A C T}

It is well known that age-hardenable alloys are generally difficult to process by equal-channel angular pressing (ECAP) at room temperature because they invariably fail by catastrophic cracking or segmentation. Experiments were conducted on two supersaturated Al–Zn–Mg alloys with the objective of developing a strategy for the processing of age-hardenable alloys at room temperature. The results from these experiments demonstrate that successful pressing may be undertaken by conducting the pressing operation very quickly (typically within <10 min) following a water quench from the solution heat-treatment temperature. It is also shown that there is a significant increase in strength in the alloys even when the ECAP is performed through only a single pass. This latter result has important implications for industrial processing.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The processing of metals through the introduction of severe plastic deformation (SPD) is attractive because it introduces significant grain refinement in bulk solids [1]. Much attention has been directed recently to the SPD procedure of equal-channel angular pressing (ECAP) in which a sample, in the form of a rod or bar, is pressed repetitively through a die where it is constrained within a channel bent through a sharp angle to impose a high strain [2]. Some materials, such as hexagonal close-packed alloys, are difficult to process by ECAP because of the limited number of slip systems and the potential for segmentation of the billet and multiple cracking when pressing at room temperature (RT) [3]. These problems may be limited or even avoided by increasing the processing temperature and/or the strain rate sensitivity of the material and/or the channel angle within the die [4–6]. However, an increase in the pressing temperature leads to larger grain sizes. Similar difficulties arise in the ECAP processing of age-hardenable aluminum alloys at RT where the formation of metastable precipitates limits the deformability of the billets. In the case of age-hardenable Al–Zn–Mg alloys, there is an additional difficulty because there is evidence that successful processing may depend upon the inter-relationship between the solution heat-treatment and the subsequent aging prior to SPD processing [7–9].

The present investigation was initiated with the objective of developing a strategy that may be used to successfully process age-hardenable alloys by ECAP at room temperature. The experiments were conducted using two Al–Zn–Mg (7xxx) alloys. The aging and precipitation characteristics of this alloy system are described in the following section and the experimental procedures and results are given in the subsequent sections.

2. Aging and precipitation characteristics in the Al–Zn–Mg system

The chemical composition and the aging conditions influence the decomposition of supersaturated solid solutions (SSS) in the Al–Zn–Mg ternary system [10–14]. The decomposition process near room temperature takes place by the formation of Guinier–Preston (GP) zones but at higher aging temperatures there is an intermediate metastable \(\eta\)'-phase and at even higher temperatures...
there are stable or equilibrium η-phase precipitates. Only a limited number of results are available describing the early stages of decomposition in these alloys [13,15]. It is well known that the precipitation and strength of supersaturated Al–Zn–Mg alloys may be effectively changed by the application of a small pre-strain introduced using conventional tension or compression [16]. Recently, processing by ECAP was used to change the microstructures and improve the mechanical properties of supersaturated alloys [7–9,17–19]. However, the application of SPD to precipitation-hardened Al–Zn–Mg alloys is more complicated. On the one hand, because of the hardening effect of precipitates in the form of GP zones and/or other metastable particles, the samples may break during processing by ECAP at RT. To avoid this problem, supersaturated Al–Zn–Mg samples are generally processed at elevated temperatures. On the other hand, at high temperatures there is additional precipitation and a recovery of the ultrafine-grained microstructures.

Recent results have shown that the application of ECAP for 8 passes at a temperature of 473 K leads to the formation of stable η-phase (MgZn$_2$) precipitates in supersaturated Al–Zn–Mg alloys so that, despite the development of a fine-grained microstructure having an average grain size of \sim500 nm, the room temperature strength of samples processed by ECAP decreases significantly relative to samples aged only at RT [19]. These data demonstrate, therefore, that the application of SPD to supersaturated alloys at elevated temperatures may lead to a decrease in the overall strength rather than to additional strengthening as in pure metals and solid solution alloys.

Concerning the processing of age-hardenable Al–Zn–Mg alloys at RT, different pre-aging treatments have been performed to avoid cracking due to the strong strengthening effect of the GP zones during subsequent SPD processing [78]. For example, some samples were directly aged at 553 K for 5 h before SPD [7] while other samples were subjected to a slow furnace cooling instead of the usual quick water quenching from a solution temperature of 749 K to RT [8]. However, these treatments lead to an over-aging of the samples through the formation of relatively coarse and stable η-phase particles [10–12] and this usually decreases the strength of the Al–Zn–Mg materials. When an Al–Zn–Mg–Cu sample was cooled slowly in a furnace and subsequently processed by equal-channel angular rolling at RT, the maximum Vickers hardness, HV, was \sim100 [8]. This value is much lower than the HV value of \sim200 obtained for an almost similar composition after water quenching from a solution temperature of 749 K to RT [8]. These experimental results demonstrate there is an increasing hardness of the samples with increasing aging time due to the early formation of GP zones after quenching. It is also apparent that characteristic steps appear in the indentation load–depth (F–h) curves at the beginning of natural aging for both alloys where this is a typical plastic instability similar to the Portevin–Le Chatelier effect or jerky flow [23].

4. Experimental results

In order to understand the kinetics of precipitation and its influence on the mechanical properties of the alloys, indentation measurements were carried out on the samples after natural aging at RT for different time periods, t_a. Typical indentation load–depth (F–h) curves are shown in Fig. 1 for the Al–Zn–Mg–Zr and Al–Zn–Mg–Cu alloys in the early stages of natural aging. Considering both the positions and the shapes of the indentation curves, the experimental results demonstrate there is an increasing hardness of the samples with increasing aging time due to the early formation of GP zones after quenching. On the one hand, at high temperatures there is additional precipitation and a recovery of the ultrafine-grained microstructures.
The instabilities in the load–depth curves observed in the very early stages of natural aging for both alloys, specifically within 20 min after quenching, are relatively regular and they are similar to those found in the stable Al–3Mg solid solution alloy [23]. However, when the aging time is increased, the steps occur less frequently and become more irregular and finally, after a certain time, \(t_i \), they disappear. The values of \(t_i \) are typically between about 100 and 200 min but in the lower concentration Al–Zn–Mg–Zr alloy the steps are retained for a longer period.

The occurrence of plastic instabilities is caused by the interaction of diffusing solute atoms with moving dislocations in the phenomenon of dynamic strain aging (DSA) [24–27]. This implies that the presence of the load-indentation steps is related to a specific solute concentration in the alloys. The formation of these steps of instability at this stage of the process indicates that the GP zones are not sufficiently strong to suppress the DSA effect. The occurrence of these steps characterizes the transition, with a lifetime of \(t_i \), from the SSS to an SSS + GP zone structure where the effect of GP zones on moving dislocations becomes dominant by comparison with that of the solute atoms. Therefore, the values of \(t_i \) give important information concerning the changes of the microstructure of supersaturated Al–Zn–Mg alloys in the range of the early formation of GP zones.

Fig. 2 shows four representative billets of the two alloys after a solution heat-treatment and water quenching followed by naturally aging at RT and then processing through 1 pass of ECAP at RT. Fig. 2(a) and (b) corresponds to the Al–Zn–Mg–Zr and the Al–Zn–Mg–Cu alloys, respectively, where there was pre-aging at RT for \(\sim 10 \) min prior to processing by ECAP where the pre-aging corresponds only to the small delay occurring between quenching and pressing. Fig. 2(c) and (d) shows the same two alloys where there was a pre-aging for an extended period of 7 days before processing by ECAP. It is apparent from Fig. 2 that the occurrence of natural aging after quenching, and specifically the length of this pre-aging, has a very significant influence on the development of strain localization and the formation of cracks during ECAP. Thus, in Fig. 2(a) and (b) the surfaces of both alloys are smooth after a short delay corresponding to an aging of only \(\sim 10 \) min at RT whereas in Fig. 2(c) the Al–Zn–Mg–Zr alloy shows the formation of intense shear bands after holding and aging of 1 week at RT. Furthermore, Fig. 2(d) shows that the Al–Zn–Mg–Cu alloy exhibits catastrophic cracking and segmentation when aging is permitted through 1 week at RT. These results confirm, therefore, the difficulty of processing age-hardenable Al–Zn–Mg alloys by ECAP and they further demonstrate the importance of conducting the ECAP almost immediately following a solution heat-treatment and quenching.

As a consequence of the nature of ECAP processing, shear bands are always formed. In the case of pure polycrystalline f.c.c. metals where the dislocations have high mobility, the shear bands are formed only on a microscopic scale and they are not instrumental in promoting failure. Samples of pure Al and Cu [28–30] may be processed easily by ECAP for up to 8 or more passes without the formation of catastrophic cracking whereas for supersaturated alloys it is necessary to consider the effect of precipitation. The macroscopic and almost catastrophic shear bands shown in Fig. 2(d) reflect the combined influence of the presence of GP zones and processing by ECAP.

Fig. 3 shows the Vickers hardness value, HV, as a function of aging time for (a) samples processed by 1 pass in ECAP and (b) as a function of the number of passes in ECAP for samples pre-aged for the shortest time of 10 min: for comparison, the hardness values obtained on the quenched and naturally aged samples without ECAP are also plotted in Fig. 3(a). Considering the effect of natural aging, it is noted that the strengthening effect of GP zones is grad-

Fig. 3. The values of the Vickers microhardness (a) as a function of pre-aging time for the samples processed by only 1 pass in ECAP and (b) as a function of the number of passes in ECAP for samples pre-aged for 10 min: the hardness values recorded without ECAP are also shown in (a).
usually enhanced up to about 1 year of aging time through storage at RT and thereafter the strength becomes saturated. The corresponding saturation HV values of the lower concentration Al–Zn–Mg–Zr alloy and the higher concentration Al–Zn–Mg–Cu alloy are ~85 and ~185, respectively.

Fig. 4 shows the differential scanning calorimetry (DSC) thermograms taken on four AlZnMgZr samples naturally aged and processed by ECAP under different conditions. The dislocation densities determined by X-ray diffraction of these samples were found to be the same, (6.5 ± 1) × 10^14 m^-2, within the experimental error. It can be seen from Fig. 4 that the DSC curves after different pre-aging and ECAP coincide, thereby showing the same precipitation processes consisting of the dissolution of GP zones at the low temperature endothermic peak, the dissolution of the equilibrium η phase particles at the high temperature endothermic peak, and the formation of η/η precipitates at the exothermic peak (intermediate region). This result demonstrates that similar GP zone microstructures are formed in different naturally aged and ECAP-processed samples which explains, together with the identical dislocation densities, the same strengths gained after ECAP depending neither upon the time period of pre-aging at RT nor upon the number of passes of ECAP. The promoting effect of ECAP on precipitation removed the differences in GP zone structures formed in the samples aged naturally for different times before ECAP.

In practice, it is well established that the application of more passes in ECAP leads to a higher fraction of boundaries having high angles of misorientation and this is important in promoting deformation mechanisms such as grain boundary sliding [31]. The TEM image in Fig. 5 shows the grain structure of the Al–Zn–Mg–Zr alloy processed through 4 passes by ECAP at RT. The average grain size in this condition was measured as ~300 nm and, for comparison, Table 1 lists the average grain sizes and average dislocation densities recorded after processing at RT and after processing through 8 passes at 473 K [19]. It is apparent that processing by ECAP at RT is advantageous because it leads to a smaller grain size, a larger dislocation density and a higher strength. These measurements confirm, therefore, the advantages of processing supersaturated alloys by ECAP at RT to avoid additional precipitation and microstructural recovery.

5. Discussion

The results from this investigation suggest two potential strategies for successfully processing age-hardenable alloys by ECAP. First, the alloys may be successfully pressed at elevated temperatures where GP zones and other strengthening precipitates are not formed. However, a disadvantage of this approach is that it leads to additional precipitation and microstructural recovery in the form of grain growth. Second, the alloys may be successfully processed at RT provided the pressing is performed immediately after quenching or at least within a very short pre-aging lifetime, tₚ, of not more than ~10 min so that the GP zones are not strong. This latter strategy is the recommended processing route because it has the advantage of minimizing grain growth.

For processing at RT immediately after, or very shortly after, quenching from the solution heat-treatment temperature, there is a possibility that the high density of dislocations introduced in the first pass of ECAP may subsequently accelerate the formation of GP zones thereby producing a detrimental effect which will become evident in subsequent passes. In the present investigation, where the samples were processed almost immediately (to within ~10 min) after quenching, the lower concentration Al–Zn–Mg–Zr alloy was successfully pressed through 7 passes at RT but the more concentrated Al–Zn–Mg–Cu alloy was successfully pressed through a total of only 3 passes at RT. This is consistent with an earlier report for the Al-7075 alloy where samples were processed by ECAP for 2 passes at RT immediately following quenching [8].

The present experimental results demonstrate that processing by ECAP, even by a single pass, typically improves the strength or hardness by ~10–40% compared to the saturation hardness. Furthermore, for both alloy compositions the strength attained by ECAP is not significantly dependent either upon the time of pre-aging at RT or even upon the number of passes of ECAP. In the

Table 1

<table>
<thead>
<tr>
<th>ECAP process</th>
<th>Average grain size determined by TEM</th>
<th>Average dislocation density determined by X-ray diffraction</th>
<th>Vickers microhardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 passes by route B, at RT</td>
<td>300 nm</td>
<td>(6.5 ± 0.7) × 10^14 m^-2</td>
<td>135</td>
</tr>
<tr>
<td>8 passes by route B, at 473 K [19]</td>
<td>500 nm</td>
<td>(3.2 ± 0.4) × 10^14 m^-2</td>
<td>85</td>
</tr>
</tbody>
</table>
case of the Al–Zn–Mg–Zr alloy aged for 10 min, the results obtained by X-ray line profile analysis and differential scanning calorimetry confirm that neither the dislocation density nor the precipitate structure change during subsequent ECAP processing after 1 pass. This is consistent with reports for other alloys [32,33] showing the strength of these quenched Al–Zn–Mg alloys may be significantly enhanced by pressing through only 1 or 2 passes of ECAP without continuing to larger numbers of passes. This latter result is important in any practical utilization of these alloys because processing through a single pass has been incorporated into several potential industrial processing procedures such as continuous confined strip shearing [34], continuous frictional angular extrusion [35] and equal-channel angular rolling [36].

It is important to note also that the same strengthening is not attained if a strain of ∼1 is imposed using alternative processing procedures such as cold-rolling. This is because in ECAP the strain is imposed under a hydrostatic pressure in a single pass and, as shown in other experiments [37], optimum strength and microstructures are achieved most readily when a high strain is imposed in a single processing operation rather than by introducing the same cumulative strain through several small strain increments.

6. Summary and conclusions

1. Experiments were conducted on two supersaturated Al–Zn–Mg alloys in order to optimize the processing parameters for ECAP at room temperature for age-hardenable alloys.

2. The results reveal a successful strategy for processing these materials by ECAP at room temperature. It is shown that pressing may be conducted successfully, without the formation of catastrophic cracking or segmentation, if the processing by ECAP is performed immediately after quenching or at least within a very short pre-aging lifetime (typically no more than ∼10 min).

3. The results demonstrate also that high strength is achieved in these alloys even when ECAP is performed through only a single pass. This suggests a potential for incorporating the ECAP processing of age-hardenable alloys in several different industrial processing procedures.

Acknowledgements

This work was supported in part by the Hungarian Scientific Research Fund, OTKA, Grant No. K67692 (N.Q.C., J.G. and J.L.), in part by Polish Ministry of the Science and Information Society Technologies as the Project No. 3 T08A 067 28 (TC) and in part by the National Science Foundation of the United States under Grant No. DMR-0243331 (CX and TGL). In addition, N.Q.C. thanks the Hungarian-American Enterprise Scholarship Fund for support and JG is grateful for the support of a Bolyai János Research Scholarship of the Hungarian Academy of Sciences.

References